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Abstract 

Background  Survivors of acute COVID-19 often suffer prolonged, diffuse symptoms post-infection, referred to as 
“Long-COVID”. A lack of Long-COVID biomarkers and pathophysiological mechanisms limits effective diagnosis, treat-
ment and disease surveillance. We performed targeted proteomics and machine learning analyses to identify novel 
blood biomarkers of Long-COVID.

Methods  A case–control study comparing the expression of 2925 unique blood proteins in Long-COVID outpatients 
versus COVID-19 inpatients and healthy control subjects. Targeted proteomics was accomplished with proximity 
extension assays, and machine learning was used to identify the most important proteins for identifying Long-COVID 
patients. Organ system and cell type expression patterns were identified with Natural Language Processing (NLP) of 
the UniProt Knowledgebase.

Results  Machine learning analysis identified 119 relevant proteins for differentiating Long-COVID outpatients (Bon-
feronni corrected P < 0.01). Protein combinations were narrowed down to two optimal models, with nine and five 
proteins each, and with both having excellent sensitivity and specificity for Long-COVID status (AUC = 1.00, F1 = 1.00). 
NLP expression analysis highlighted the diffuse organ system involvement in Long-COVID, as well as the involved cell 
types, including leukocytes and platelets, as key components associated with Long-COVID.

Conclusions  Proteomic analysis of plasma from Long-COVID patients identified 119 highly relevant proteins and two 
optimal models with nine and five proteins, respectively. The identified proteins reflected widespread organ and cell 
type expression. Optimal protein models, as well as individual proteins, hold the potential for accurate diagnosis of 
Long-COVID and targeted therapeutics.
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Introduction
Coronavirus disease 2019 (COVID-19) is a multi-system 
infection caused by the highly transmissible severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) (Har-
rison et al. 2020). SARS-CoV-2 binds to an angiotensin-
converting enzyme 2 (ACE2) receptor expressed on 
the surfaces of many cells for entry (Yuki et  al. 2020). 
COVID-19 severity varies greatly with some experiencing 
mild symptoms to others experiencing multiorgan failure 
associated with extracellular matrix changes, impaired 
immune cell homing and programmed cell death (Iosef 
et al. 2023).

Approximately 30% of COVID-19 survivors suffer from 
prolonged, diffuse symptoms including fatigue, dyspnea, 
neurological symptoms, chest pain and gastrointesti-
nal upset (Nalbandian et al. 2021; Xu et al. 2022; Crook 
et al. 2021; Xie et al. 2022; Pinto et al. 2022; Nguyen et al. 
2022). These prolonged symptoms are termed “Long-
COVID”; however, a comprehensive disease classification 
with participating biomarkers and mechanisms is not 
defined. Long-COVID symptom presentation is hetero-
geneous making it challenging to develop clinical models 
for diagnosis, as well as disease surveillance. The symp-
toms of Long-COVID are similar to those of patients 
affected by prolonged SARS, the Middle East respira-
tory syndrome, and Myalgic Encephalomyelitis/Chronic 
Fatigue Syndrome (Nalbandian et  al. 2021; Crook et  al. 
2021). Lastly, the timeline of classifying Long-COVID is 
unclear with some suggesting prolonged symptoms must 
occur for greater than 4  weeks post-infection and oth-
ers after 12 weeks (Nalbandian et al. 2021; Nguyen et al. 
2022; Maltezou et al. 2021; Raveendran et al. 2021).

A few mechanisms have been proposed to explain 
the multi-system symptoms of Long-COVID includ-
ing prolonged hyper-inflammation (Ortelli, et  al. 2021; 
Patterson et  al. 2021a; Patterson et  al. 2021b), auto-
nomic nervous system disruption (Dani et al. 2021), and 
persistent thrombosis (Silva Andrade et  al. 2021). We 
recently reported angiogenesis as a key mechanism in 
Long-COVID outpatients, with the elevation of 14 blood 
vascular transformation biomarkers (Patel et  al. 2022). 
Identification of accurate Long-COVID-specific bio-
markers allows for early disease detection, accurate diag-
nosis, prognosis and/or targeted therapeutics. Advanced 
proteomic techniques, such as proximity extension assays 
[PEA; (Assarsson et al. 2014; Lundberg et al. 2011))] have 
great potential for an efficient and holistic approach to 
identifying disease and injury biomarkers (Fraser et  al. 
2020a; Fraser et al. 2021; Iosef et al. 2023; Van Nynatten 
et al. 2022).

This study aims to identify blood proteins specific 
to Long-COVID outpatients, relative to age- and sex-
matched acutely ill COVID-19 inpatients and healthy 

control subjects. Our specific objectives were: (1) to 
measure a large number of blood proteins with PEA 
from Long-COVID outpatients, COVID-19 inpatients, 
and healthy control subjects (2) to determine the rela-
tive importance of the proteins in differentiating Long-
COVID subjects; and (3) to determine the cell types 
and organ systems in which the important proteins are 
expressed.

Methods
Study participants and blood sampling
All patients were screened and enrolled from our ter-
tiary care system (London, Ontario, Canada). Both Long-
COVID and acutely ill COVID-19 had their COVID-19 
status confirmed as part of standard hospital testing by 
detection of two SARS-CoV-2 viral genes using poly-
merase chain reaction (CDC 2019-Novel Coronavirus 
2019). Long-COVID outpatients had been referred to a 
specialty clinic based on prolonged, diffuse symptoms. 
Venous blood was drawn once as part of a larger clini-
cal screen, and excess plasma collected for later research 
analysis by Pathology and Laboratory Medicine (PaLM). 
Both Ward and intensive care unit (ICU) patients were 
enrolled on admission to the hospital. Blood sampling for 
inpatients began on admission, Ward or ICU Day 1. Daily 
blood was obtained from critically ill ICU patients via 
indwelling catheters and if a venipuncture was required, 
research blood draws were coordinated with a clinically 
indicated blood draw. In keeping with accepted research 
phlebotomy protocols for adult patients, blood draws did 
not exceed maximal volumes (NIH Hrpp 2009). Blood 
was centrifuged and plasma isolated, aliquoted at 250 µL, 
and frozen at − 80 °C. All samples remained frozen until 
use and freeze/thaw cycles were avoided. The healthy 
control subjects were individuals without disease, acute 
illness, or prescription medications that were previously 
banked in the Translational Research Centre, London, 
ON (Directed by Dr. D.D. Fraser; https://​trans​latio​nalre​
searc​hcent​re.​com/) (Brisson et  al. 2012; Gillio-Meina 
et al. 2013). These latter samples were obtained prior to 
the emergence of SARS-CoV-2 in our region and there-
fore, were considered to not have been exposed to the 
virus.

Patient demographics, clinical data, and cohort matching
Baseline characteristics for Long-COVID, Ward and, 
ICU patients were recorded and included age, sex, 
comorbidities, presenting symptoms, interventions, and 
laboratory measurements. For Long-COVID patients, we 
recorded both initial infection variables and clinical vari-
ables at follow-up clinic visit. For the latter, we focused 
on lingering symptoms, laboratory values and interven-
tions. For ICU patients, we included standard illness 

https://translationalresearchcentre.com/
https://translationalresearchcentre.com/
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severity scores, including Multiple Organ Dysfunction 
Score (MODS) (Priestap et  al. 2020) and Sequential 
Organ Failure Assessment scores (Singer et al. 2016). The 
PaO2 to FiO2 ratio and chest radiograph findings were 
recorded for all ICU patients. We also recorded clini-
cal interventions received during the observation period 
including the use of antibiotics, antiviral agents, systemic 
corticosteroids, vasoactive medications, venous throm-
boembolism prophylaxis, antiplatelet, or anticoagulation 
treatment, renal replacement therapy, high flow oxygen 
therapy, and mechanical ventilation (invasive and non-
invasive). Final participant groups were constructed by 
age- and sex-matching Long-COVID outpatients with 
Ward COVID-19 inpatients, ICU COVID-19 inpatients, 
and healthy control subjects.

Proximity extension assay
Plasma was thawed for PEA testing (Olink Proteomics, 
Sweden) as previously described (Lundberg et  al. 2011; 
Assarsson et  al. 2014). Specifically, we measured a total 
of 3072 plasma proteins in the plasma of Long-COVID, 
acutely ill COVID-19, and healthy control subjects. The 
Olink Explore 3072 library consists of multiple panels 
with some duplicated proteins leading to the measure-
ment of 2925 unique proteins. The PEA was performed 
in three steps: (1) antibody pairs, labeled with unique 
DNA oligonucleotides, were attached to their target anti-
gen in plasma; (2) oligonucleotides that were brought 
into proximity hybridized and were extended by a DNA 
polymerase; and (3) the newly formed DNA barcode was 
amplified for high-sensitivity, high-specificity readout 
with next generation sequencing (NovaSeq Platform; 
Illumina Inc., San Diego, CA). Data were generated and 
expressed as relative quantification on the log2 scale of 
normalized protein expression (NPX) values. Data were 
converted from log2 scale to normal scale to better repre-
sent protein expression. Samples were screened based on 
quality controls for immunoassay and detection, as well 
as degree of hemolysis. Following proteomic quality con-
trol, all 88 (22 healthy control, 22 Ward COVID-19, 22 
ICU COVID-19, and 22 Long-COVID) patients/subjects 
were deemed suitable for analysis.

Conventional statistics
Patient baseline clinical characteristics were reported as 
median (IQRs) for continuous variables and frequency 
(%) for categorical variables. The individual biomarkers of 
Long-COVID outpatients were compared to a combined 
group of healthy controls, Ward COVID-19 inpatients, 
and ICU COVID-19 inpatients, using a Mann–Whitney 
U Test. A Kruskal–Wallis H-test for independent samples 
followed by a pairwise posthoc Dunn test was also con-
ducted for the optimal models. A Bonferroni correction 

was applied to avoid multiple comparison complications, 
with only Bonferroni-corrected P-values being reported 
and those with a P < 0.01 were considered to be statisti-
cally significant.

Machine learning
For machine learning, a Random Forest classifier based 
on decision trees was used to classify the Long-COVID 
cohort in comparison to a combined cohort of acutely 
ill COVID-19 ward/ICU inpatients and healthy control 
subjects by their biomarkers. The Boruta feature reduc-
tion algorithm was used to identify the most important 
biomarkers (Kursa and Rudnicki 2010). The Boruta algo-
rithm is based on Random Forest classifiers and individu-
ally compares each biomarker to randomly generated 
data to determine if the biomarker is better at classifying 
than chance. The results from the Boruta feature reduc-
tion identified the most relevant biomarkers for classify-
ing Long-COVID.

The following steps were undertaken to conduct a con-
servative analysis that mitigates concerns of relatively 
small sample sizes and overfitting due to Boruta feature 
reduction being based on Random Forest classifiers. 
First, the data was split into a feature reduction dataset 
(70%) and a testing dataset (30%), stratified by subject 
groups. The Boruta algorithm was run on the feature 
reduction dataset to determine the most relevant fea-
tures. A reduced dataset was created from the testing 
dataset and only contained the most relevant features. 
The reduced dataset was then used for the classification 
of Long-COVID. To reduce overfitting and maintain 
a conservative model, three-fold cross-validation with 
a Random Forest of 10 trees and a maximum depth of 
three was used (Tang et al. 2018).

To prepare an optimal model, recursive feature elimi-
nation (RFE) was used. As a Random Forest is a set of 
decision trees, we were able to interrogate this collec-
tion of trees to identify the features that have the high-
est predictive value (viz., those features that frequently 
appear near the top of the decision tree). Based on this 
characteristic, RFE starts with the reduced dataset, fits a 
Random Forest classifier and determines the importance 
rankings. The algorithm then drops the least important 
feature and repeats the process until only 10 features are 
remaining. Due to the randomness in the algorithm and 
Random Forest models, 10,000 runs of RFE were con-
ducted. Those features that were in the top 10 for more 
than a specified threshold of the 10,000 runs were deter-
mined to be the optimal features. The specified thresh-
old is determined after the inspection of the RFE results. 
An optimal dataset containing only these optimal fea-
tures was generated from the reduced dataset. The same 
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classification process used for the reduced dataset was 
used on the optimal dataset.

Receiver operating characteristic (ROC) curves using 
Logistic Regression were conducted to determine the 
sensitivity and specificity of individual molecules for pre-
dicting Long-COVID status in comparison to healthy 
controls and COVID-19 patients. Area-under-the-curve 
(AUC) was calculated as an aggregate measure of protein 
performance across all possible classification thresholds 
(Bradley 1997). Precision and Recall were determined, 
including their combined metric (F1 score), which was 
calculated as the harmonic mean. A high F1 score indi-
cated that both, Precision and Recall were high. The 
biomarker data was visualized with a nonlinear dimen-
sionality reduction on the full, reduced, and optimal 
datasets using the t-distributed stochastic nearest neigh-
bour embedding (t-SNE) algorithm. t-SNE assumes that 
the ‘optimal’ representation of the data lies on a manifold 
with complex geometry, but a low dimension, embed-
ded in the full-dimensional space of the raw data (Van 
der Maaten and Hinton 2008).

A pairwise comparison, using cosine similarity, was 
conducted to determine the similarity between subjects 
across the selected biomarkers (Jambu 1991). As such, 
subjects similar across their selected biomarker profile 
have a score closer to 1, while dissimilar subjects have a 
score closer to 0. The analysis was done with data Min–
Max scaled between 0 and 1 and the cosine similarities 
were visualized using a heatmap. The machine learning 
analysis was conducted using Python version 3.9.7 and 
Scikit-Learn version 1.0.2 (Pedregosa et al. 2011).

Natural language processing
Exploratory expression analysis was also conducted to 
determine physiological areas of interest in Long-COVID 
subjects. Protein expression tissue specificity was parsed 
from UniProt Knowledgebase using the UniProt website 
REST API (Bateman et  al. 2021). The tissue specificity 
was unstructured text on the expression at the mRNA 
or protein level in cells or tissues gathered manually by 
experts. The expression information was processed by 
Natural Language Processing (NLP) using the Stanza 
python package implemented with spaCy (Python v. 
3.10.4; spaCy v. 3.3.1; spaCy-Stanza v. 1.0.2; negspaCy v. 
1.0.3) (Zhang et al. 2021a; Qi et al. 2020; Honnibal et al. 
2020). An NLP named-entity recognition (NER) pipeline 
was configured with the MIMIC package for preprocess-
ing, negation detection, and the pretrained Stanza BioN-
LP13CG Biomedical model. The negation detection was 
done using the NegEx-based negspaCy implementation 
with a modified English clinical term set to filter negative 
expression terms. Although the BioNLP13CG biomedi-
cal model was based on Cancer Genetics and publicly 

available PubMed abstracts, in comparison to the other 
Stanza models, it provided the most granular entity clas-
sification, including anatomical system, organ, tissue, 
multi-level tissue, and cell type entities. The detected 
organ and cell type entities were manually classified into 
keyword-based groups separately. The manual expression 
curation process relies on existing literature and is not 
easily structured into specific organ systems. To include 
the maximum expression information in the analysis, the 
organ, tissue, multi-tissue, and anatomical system entity 
types were combined and manually sorted into organ 
systems. The frequency of the keyword-based categories 
with respect to the relevant proteins was determined to 
identify physiological patterns of expression.

Results
A total of 4 age- and sex-matched groups were included 
consisting of Long-COVID outpatients (median years 
old = 61; IQR = 21; n = 22), Ward COVID-19 inpatients 
(median years old = 60; IQR = 22; n = 22), ICU COVID-
19 inpatients (median years old = 58; IQR = 18; n = 22) 
and healthy control subjects (median years old = 59; 
IQR = 16; n = 22). There were no significant differences 
concerning age (Kruskal–Wallis H-test, P = 0.9880) 
and sex (Chi-Square, P = 1.000) between the 4 cohorts. 
Baseline demographic characteristics, comorbidities, 
laboratory measurements, interventions, and chest x-ray 
findings of Long-COVID outpatients and Ward/ICU 
COVID-19 inpatients, are reported in Tables  1 and 2 
respectively. Long-COVID outpatients had a single blood 
draw at their clinic visit, whereas blood from Ward and 
ICU COVID-19 inpatients was drawn on day 1 of hos-
pital admission. Long-COVID patients had normal lym-
phocyte measurements (2.0; normal range 1.0–4.0 × 109), 
while both Ward and ICU COVID-19 patients had 
abnormally low values (P < 0.0001). The mortality rates 
for Ward and ICU COVID-19 inpatients were 9.1% and 
45.5%, respectively.

A total of 2,925 unique biomarkers were identified fol-
lowing the removal of duplicates. After a Boruta feature 
reduction, 119 plasma biomarkers were identified and 
found to be useful in classifying Long-COVID outpa-
tients when compared to a combined cohort of acutely ill 
COVID-19 inpatients and healthy control subjects (Addi-
tional file 1: Table S1). All 119 relevant biomarkers were 
significantly different between Long-COVID subjects 
and the other subjects as calculated by the Mann–Whit-
ney U test with Bonferroni multiple-comparison correc-
tion (corrected individual P < 0.0001, significant P < 0.01). 
Of the 119 biomarkers, only 10 exhibited decreased 
expression (FRZB, FN1, CKMT1A_CKMT1B, HS6ST1, 
BMP6, ANGPTL2, IFNLR1, C1QA, DRAXIN, and 
ADAMTSL4). Each of the 119 relevant biomarkers had 



Page 5 of 15Patel et al. Molecular Medicine           (2023) 29:26 	

excellent individual classification ability with AUCs rang-
ing between 0.91 and 1.00. Using the 119 relevant blood 
biomarkers, a t-SNE plot illustrated that Long-COVID 
patients were easily separable from acutely ill COVID-19 
inpatients and healthy control subjects (Fig. 1A; classifi-
cation accuracy 100%, AUC 1.00, F1 1.00).

Recursive feature elimination was used to determine 
two sets of optimal proteins, one with a threshold of 50% 
and another with a threshold of 80% (Additional file 1: Fig. 
S1). The threshold represents the percentage of runs, out 
of 10,000 RFE repetitions, that a particular protein was in 
the top 10 reduced proteins. With the threshold of 50%, 
an optimal set of nine proteins (CXCL5, AP3S2, MAX, 
PDLIM7, EDAR, LTA4H, CRACR2A, CXCL3, FRZB) 
was determined from the 119 relevant proteins. A t-SNE 
plot based on the nine optimal biomarkers showcases a 
distinct separation between Long-COVID outpatients 
and the acutely ill COVID-19 inpatients and healthy con-
trol subjects (Fig. 1B; classification accuracy 100%, AUC 
1.00, F1 1.00). With a threshold of 80%, an optimal set 

Table 1  Long-COVID outpatient demographics and clinical data

Initial infection variable Outpatients (n = 22)

Age (yrs), median (IQR) 61.0 (20.5)

Male sex, no. (%) 12 (54.5)

Diagnostic test: PCR, serology, no. (%) 22 (100.0)

Vaccination status at infection, no. (%) 2 (9.1)

Hospitalization, no. (%)

 Ward 7 (30.4)

 ICU 1 (4.3)

Comorbidities, no. (%)

 Diabetes 6 (27.3)

 Hypertension 8 (36.4)

 Coronary artery/heart disease 2 (9.1)

 Chronic/congestive heart failure 0 (0.0)

 Chronic kidney disease 0 (0.0)

 Cancer 1 (4.5)

 COPD 0 (0.0)

 Asthma 4 (18.2)

Presenting symptoms at infection, no. (%)

 Fever 16 (72.7)

 Cough 17 (77.3)

 Anosmia/Ageusia 13 (59.1)

 Pharyngitis 8 (36.4)

 Headache 14 (63.6)

 Confusion/Memory 2 (9.1)

 Myalgias 13 (59.1)

 Dyspnea 16 (72.7)

 Chest pain 8 (36.4)

 Nausea/Vomiting/Diarrhea 11 (50.0)

Interventions at infection, no. (%)

 Steroids 6 (27.3)

 Remdesivir 0 (0.0)

 Tocilizumab 1 (4.5)

Long-COVID Clinic Variables

 Follow up, days from infection onset, median 
(IQR)

101.5 (45.5)

Lingering symptoms at follow up, no. (%)

 Respiratory 16 (72.7)

 Cardiovascular 6 (27.3)

 Neurologic 8 (36.4)

 Musculoskeletal 0 (0.0)

 Gastro-Intestinal 3 (13.6)

 Psychiatric 1 (4.5)

 Cutaneous 0 (0.0)

 Balance 0 (0.0)

 Chest pain 4 (18.2)

 Concentration 0 (0.0)

 Cough 2 (9.1)

 Dyspnea 16 (72.7)

 Fatigue 11 (50.0)

 Headache 2 (9.1)

 Low mood 1 (4.5)

Table 1  (continued)

Initial infection variable Outpatients (n = 22)

 Anxiety 1 (4.5)

 Memory 6 (27.3)

 Nausea 1 (4.5)

 Palpitations 1 (4.5)

 Paresthesia 1 (4.5)

 Smell/taste 2 (9.1)

 Word finding 1 (4.5)

 Non-specific 11 (50.0)

Laboratories at follow up, median (IQR)

 White blood cell count 7.1 (1.9)

 Neutrophils 4.5 (1.5)

 Lymphocytes 2.0 (0.7)

 Hemoglobin 139.5 (24.8)

 Platelets 239.5 (64.2)

 C-Reactive Protein (CRP) 1.8 (3.5)

 Ferritin 76.0 (118.8)

 Lactate Dehydrogenase (LDH) 206.0 (39.0)

 Alanine Aminotransferase (ALT) 20.0 (11.2)

Interventions at follow up, no. (%)

 Budesonide 1 (4.5)

 Anticoagulant 1 (4.5)

 Budesonide/Formoterol 10 (45.5)

 Salbutamol 3 (13.6)

 Furosemide 1 (4.5)

 Nasal spray 2 (9.1)

 Oxygen 2 (9.1)

 Physiotherapy 4 (18.2)

 None 8 (36.4)
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Table 2  Acutely ill COVID-19 inpatient demographics and clinical data

Variable Ward Inpatients (n = 22) ICU Inpatients (n = 22)

Age (yrs), median (IQR) 60.0 (21.5) 58.0 (17.5)

Male sex, no. (%) 12 (54.5) 12 (54.5)

Weight (kg), median (IQR) 84.8 (14.8) 90.0 (28.3)

Height (cm), median (IQR) 169.0 (9.2) 170.0 (9.0)

BMI, median (IQR) 28.6 (5.6) 30.5 (7.6)

MODS, median (IQR) – 5.0 (1.0)

SOFA Score, median (IQR) – 5.5 (5.8)

Comorbidities, no. (%)

 Diabetes 4 (18.2) 10 (45.5)

 Hypertension 9 (40.9) 9 (40.9)

 Coronary artery/heart disease 1 (4.5) 2 (9.1)

 Chronic/congestive heart failure 0 (0.0) 0 (0.0)

 Chronic kidney disease 1 (4.5) 2 (9.1)

 Cancer 3 (13.6) 2 (9.1)

 COPD 0 (0.0) 1 (4.5)

Presenting symptoms, no. (%)

 Fever 18 (81.8) –

 Cough 18 (81.8) –

 Anosmia/Ageusia 4 (18.2) –

 Pharyngitis 4 (18.2) –

 Headache 3 (13.6) –

 Myalgias 14 (63.6) –

 Dyspnea 20 (90.9) –

 Chest pain 3 (13.6) –

 Nausea/Vomiting/Diarrhea 9 (40.9) –

Pulmonary pathology, no. (%)

 Unilateral pneumonia – 1 (4.5)

 Bilateral pneumonia 21 (95.5) 20 (90.9)

 Interstitial infiltrates/R effusion – 1 (4.5)

Laboratories, median (IQR)

 Hemoglobin 129.5 (23.0) 118.5 (29.8)

 White Blood Cell count 6.8 (4.9) 8.8 (7.9)

 Neutrophils 5.8 (3.9) 7.5 (7.4)

 Lymphocytes 0.8 (0.7) 0.7 (0.6)

 Platelets 210.0 (68.5) 220.0 (143.5)

 Creatinine 69.5 (25.5) 79.5 (86.2)

 International Normalized Ratio 1.0 (0.1) 1.2 (0.1)

 Lactate 1.7 (0.9) 1.2 (0.8)

 Partial thromboplastin time (PTT) – 26.5 (5.0)

 PaO2/FiO2 Ratio – 128.5 (62.5)

Interventions, no. (%)

 Renal replacement therapy 0 (0.0) 5 (22.7)

 High-flow nasal cannula 13 (59.1) 15 (68.2)

 Non-invasive mechanical ventilation 1 (4.5) 6 (27.3)

 Invasive mechanical ventilation 2 (9.1) 20 (90.9)

 Extracorporeal membrane oxygenation 0 (0.0) 1 (4.5)

 Tocilizumab 2 (9.1) 0 (0.0)

 Steroids 21 (95.5) 14 (63.6)

 Vasoactive medications 2 (10.0) 18 (81.8)
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of five proteins (CXCL5, AP3S2, MAX, PDLIM7, FRZB) 
was determined from the 119 relevant proteins. A t-SNE 
plot based on the five optimal biomarkers showcases 

a distinct separation between the Long-COVID out-
patients and the acutely ill COVID-19 inpatients and 
healthy control subjects (Fig.  1C; classification accuracy 

Table 2  (continued)

Variable Ward Inpatients (n = 22) ICU Inpatients (n = 22)

 Antibiotics 22 (100.0) 22 (100.0)

 Anti-virals 4 (18.2) 3 (13.6)

 Antiplatelet 4 (18.2) 17 (77.3)

 Anticoagulation 22 (100.0) 21 (95.5)

Outcomes

 Days, median (IQR) 9.0 (6.8) 15.5 (15.0)

 Died, no. (%) 2 (9.1) 10 (45.5)

Fig. 1  Identification of important blood proteins in Long-COVID outpatients. A Subjects plotted in two dimensions, following t-SNE dimensionality 
reduction of all 119 important proteins determined by Boruta feature reduction, shows cluster separation of Long-COVID outpatients from acutely 
ill COVID-19 ward/ICU inpatients and healthy control subjects. B Subjects plotted in two dimensions, following t-SNE dimensionality reduction 
of top 9 important proteins determined by Recursive Feature Selection with 50% threshold, shows separation cluster of Long-COVID outpatients 
from acutely ill COVID-19 ward/ICU inpatients and healthy control subjects C Subjects plotted in two-dimensions, following t-SNE dimensionality 
reduction of top 5 important proteins determined by Recursive Feature Selection with 80% threshold, shows separation cluster of Long-COVID 
outpatients from acutely ill COVID-19 ward/ICU inpatients and healthy control subjects with some mixing D A heatmap demonstrated the pairwise 
cosine similarity between cohort’s protein profiles for top 9 proteins. Greater cosine similarity measure between subjects indicates similar protein 
profiles while smaller measure indicates large differences between profiles (distance was pseudocolored on the bar scale). The protein profile of 
Long-COVID outpatients is distinctively different from all other cohorts. E A heatmap demonstrated the pairwise cosine similarity between cohort’s 
protein profiles with respect to top 5 proteins. Greater cosine similarity measure between subjects indicates similar protein profiles while smaller 
measure indicates large differences between profiles (distance was pseudocolored on the bar scale). The protein profile of Long-COVID outpatients 
is distinctively different from all other cohorts
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100%, AUC 1.00, F1 1.00). All nine of the optimal bio-
markers had excellent individual classification ability 
with an AUC of 1.00, except for CRACR2A which had 
an AUC of 0.97 (Additional file 1: Tables S1 and S2). All 

of the nine optimal proteins were significantly elevated 
in Long-COVID outpatients, other than FRZB which 
was significantly decreased in Long-COVID outpatients 
(Fig. 2; Additional file 1: Table S2). The functions of the 

Fig. 2  Protein Expression of Optimal 9 Proteins in Long-COVID. Blue points are Long-COVID outpatient measurements; green filled area represents 
5th percentile to 95th percentile protein expression range of healthy control subjects. A–D, F–I Plots demonstrating elevated protein expression 
in Long-COVID compared to healthy controls versus time after acute infection for CXCL5, AP3S2, MAX, PDLIM7, EDAR, LTA4h, CRACR2A, CXCL3. E A 
plot demonstrating decreased FRZB expression in Long-COVID compared to healthy controls versus time after acute infection
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optimal nine proteins were described (Additional file  1: 
Table S3). Confounding variables, such as steroid admin-
istration, were excluded via correlation analysis between 
patient/subject variables and protein expression (data not 
shown).

Pairwise cosine similarity between all subjects was cal-
culated to compare the cohorts in terms of holistic nine 
and five optimal protein profiles, presented in Fig. 1D, E, 
respectively. For both nine and five optimal protein sets, 
the protein profile between the healthy control subjects 
and acutely ill COVID-19 inpatients was homogeneous. 
The Long-COVID outpatients were relatively less homo-
geneous but clearly distinct from the other cohorts.

Named-entity recognition was conducted on the tissue 
expression information provided by the UniProt Knowl-
edgebase. Out of the 119 reduced proteins, 60 (50.4%) 
had organ expression information (Additional file  1: 
Table S4) and 44 (37.0%) had cell type expression infor-
mation (Additional file 1: Table S5). The percentage of the 
60 molecules that are expressed in specific organ systems 
and the percentage of the 44 molecules that are expressed 
in specific cell types are presented in Fig. 3A, B respec-
tively. The leading organ system based on the number 
of changed proteins was the digestive system. Analyses 
of cell type expression demonstrated that the number of 
changed proteins was greatest in lymphocytes/leukocytes 
not yet determined.

Discussion
In this study, we measured the expression of 2925 blood 
proteins using targeted proteomics for age- and sex-
matched Long-COVID outpatients, acutely ill COVID-19 
inpatients (Ward and ICU) and healthy control subjects. 
Using machine learning algorithms, we identified 119 
important proteins that differentiate Long-COVID out-
patients from other cohorts, indicating a unique pro-
tein profile. Two optimal models, with a subset of nine 
and five proteins, accurately differentiated Long-COVID 
patients from acutely ill COVID-19 inpatients and 
healthy control subjects (classification accuracy of 100%, 
AUC of 1.00, F1 1.00). Organ and cell type expressions 
were examined with NLP of the UniProt Knowledgebase.

Our patient cohorts were similar to those reported in 
earlier studies with regard to demographics, comorbidi-
ties and clinical presentation. The Long-COVID outpa-
tients suffered diffuse symptoms across multiple organ 
systems, such as fatigue, post-exertional malaise, anosmia 
and cognitive dysfunction (Carf ì et al. 2020; Davis et al. 
2021). With regards to acutely ill COVID-19 patients, 
they were also similar to those reported in earlier cohorts 
(Myers et al. 2020; Bhatraju, et al. 2020; Zhou et al. 2020; 
Wu et al. 2020), and demonstrated significant inflamma-
tory and thrombotic mechanisms (Fraser et  al. 2020a; 

Fraser et al. 2020b; Fraser et al. 2020c; Gill et al. 2020), as 
well as microvascular injury (Fraser et al. 2020d).

Our study identified 119 proteins that differentiated 
Long-COVID outpatients from acutely ill COVID-19 
inpatients and healthy control subjects. Each of the 119 
proteins was significantly different in Long-COVID out-
patients, as compared to other cohorts, and had indi-
vidual AUCs ranging from 0.91 to 1.00. The models with 
a reduced number of biomarkers were created to pro-
vide specific research targets for future studies assess-
ing disease specificity, diagnostics and understanding of 
Long-COVID pathophysiology. The first optimal model 
contained nine proteins: CXCL5, AP3S2, MAX, PDLIM7, 
FRZB, EDAR, LTA4H, CRACR2A, and CXCL3. The opti-
mal second model is a subset of the first with five pro-
teins: CXCL5, AP3S2, MAX, PDLIM7, and FRZB. Each 
of the optimal models demonstrated excellent classifica-
tion and AUC, as well as precision and recall. Each of the 
nine optimal proteins was significantly different in Long-
COVID outpatient when compared pair-wise to the other 
cohorts. Of the nine proteins, eight had increased expres-
sion and one decreased. The functions of the optimal 
nine proteins varied widely and appropriately corrobo-
rated that Long-COVID is a multifaceted condition in 
which multiple systems are affected.

NLP, a subset of artificial intelligence, was used to 
identify organ and cell type expression patterns of the 
significant 119 proteins. Expert curated expression infor-
mation from UniProt Knowledgebase was parsed using 
NLP to identify key cell types, organs, tissues, major tis-
sue systems and anatomical systems. Parsed information 
from the latter four expression categories was combined 
to represent the organ system to which the molecules 
were being expressed within. Of the 119 proteins, 60 
had organ system expression information and 44 had 
cell type expression information. Overall, other than the 
integumentary system, the reduced proteins are highly 
expressed in all other organ systems, corroborating again 
the multi-system symptom presentation in Long-COVID 
patients.

The digestive system had the highest number of signifi-
cant proteins with altered expression. This finding was 
consistent with a significant gut biome change identified 
in Long-COVID patients when compared to both con-
trols and recovered COVID-19 patients without Long-
COVID symptoms (Liu et al. 2022). Gastrointestinal and 
digestive symptoms, including vomiting, nausea and diar-
rhea, have been reported in Long-COVID patients (Groff 
et al. 2021; Huang et al. 2021). Mutations in AP3S2, one 
of the optimal five proteins, were associated with type 
2 diabetes mellitus (Kazakova, et  al. 2017; Kooner et  al. 
2011; Mohlke and Boehnke 2015) and may be related 
to the hypothesized increase in type 2 diabetes mellitus 
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due to COVID-19 (Rubino et  al. 2020). CES3 played an 
important role in adipocyte differentiation and promoted 
lipid storage (Dominguez et al. 2014). In CES3 knockout 
mice, insulin sensitivity and glucose tolerance improved 
(Wei et  al. 2010). In animal models, VPS37A changed 
intracellular receptor localization such that overexpres-
sion of VPS37A resulted in decreased blood glucose lev-
els (Sekar 2022) and in Long-COVID may be a protective 

effect to counteract the AP3S2 and CES3 overexpression. 
Overexpression of SRC is involved with colon cancer 
and often results in metastasis via its signalling pathways 
(Chen et al. 2014).

The lymphatic system appeared to be highly affected 
in Long-COVID as more than 50% of the 60 signifi-
cant proteins had expression in lymphatic organs. Of 
the 44 proteins with cell type expression information, 

Fig. 3  Frequency of protein expression in major organs/body systems and cell type. A A bar plot demonstrating the percentage of proteins that are 
expressed in specific major organs and body systems determined by Natural Language Processing. There were total of 60 proteins out of the 119 
proteins (50%) with UniProt organ system expression information. The organ system classification combines NLP identified organs, tissue, multi-level 
tissue and anatomical system entities. B A bar plot demonstrating the percentage of proteins that are expressed in specific cell types determined 
by Natural Language Processing. There were total of 44 proteins out of the 119 proteins (37%) with UniProt cell type expression information. Only 
those cell types with percentages greater than 5% are shown for visualization clarity
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lymphocytes and leukocytes not yet determined were the 
two most common cell types. Consistent with protein 
expression, autopsies of critically ill COVID-19 patients 
have revealed changes to the structure of the spleen and 
lymph nodes (Liu et  al. 2020). CRACR2A and CXCL3 
were both linked to immune cell activation and may 
indicate an ongoing immune response in Long-COVID 
outpatients. CRACR2A participated in T-cell activa-
tion and functional CRACR2A changes were linked to 
immunodeficiency disorders (Srikanth, et  al. 2016; Wu, 
et al. 2021; Notarangelo et al. 2020). CXCL3 was linked 
to activating neutrophils, basophils, eosinophils, mono-
cytes, smooth muscle cells, and lymphocytes (Laing and 
Secombes 2004). Three of the optimal nine proteins, 
CXCL5, LTA4H, and CXCL3, as well as CCL5, CCL11, 
CCL13, CCL17, and CCL26 from the 119 proteins were 
pro-inflammatory (Laing and Secombes 2004; Mendez-
Enriquez and García-Zepeda 2013; Fourie 2009; Chang 
et  al. 1994; Larose et  al. 2015; Soria and Ben-Baruch 
2008; Ponath et al. 1996). CCL3 and CCL5 were reported 
previously to be elevated in Long-COVID patients (Pat-
terson et al. 2021b). Several immune cell receptors were 
also a part of the top 119 proteins including CD226, 
CD84, CD40LG, and CD69. These inflammatory proteins 
were all significantly elevated in Long-COVID patients 
when compared to healthy control subjects and acutely ill 
COVID-19 subjects.

Long-COVID appeared to highly impact the nerv-
ous system with symptoms often including headaches, 
fatigue, and brain fog (Raveendran et  al. 2021; Ortelli, 
et  al. 2021). The NLP expression analysis showed that 
a large number of proteins are highly expressed in the 
nervous system, particularly in neurons. FRZB, AP3S2, 
and MAX were not only part of the optimal model, 
but were also linked to neurological conditions. FRZB 
was linked to defects in sensory innervation and spi-
nal innervation (John et  al. 2012), and decreased FRZB 
expression was associated with increased neuronal devel-
opment (Jang et al. 2013). AP3S2 was a small chain of the 
Adaptor-related protein complex 3 (AP-3). AP-3 subunit 
defects lead to severe neurological abnormalities includ-
ing neurodevelopmental delays, intellectual disability 
and seizures (Guardia et al. 2018). MAX mutations were 
associated with hereditary pheochromocytoma, a neural 
crest cell-based neuroendocrine tumour in the adrenal 
medulla (Comino-Méndez et  al. 2011; Burnichon et  al. 
2012). Beyond the panel of optimal proteins, PLXNB3, 
APP, and BDNF were also associated with neurological 
conditions. PLXNB3, overexpressed in our Long-COVID 
outpatients has been previously linked to COVID-19 
(Yaşar et  al. 2021); it was shown to stimulate neurite 
outgrowth in mice and was also associated with verbal 
performance and brain white matter volume in humans 

(Hartwig et  al. 2005; Rujescu et  al. 2007). Overexpres-
sion of APP was either a protective response leading to 
cell health and growth, or detrimental with increased Aß 
accumulation and decreased dendritic synapses (Hoe 
et al. 2012; O’Brien and Wong 2011). BDNF upregulation 
was shown to increase proliferation and differentiation of 
neural stem cells (Lee et al. 2016).

Survivors of acute COVID-19 were at an increased 
risk of developing cardiovascular disorders including 
ischemic heart disease, inflammatory heart disease, dys-
rhythmias, and thrombotic disorders (Xie et  al. 2022). 
Vascular endothelial injury, angiogenesis and thrombosis 
were associated with acute COVID-19 pathophysiology 
(Ackermann, et  al. 2020; Fraser et  al. 2020e). Similarly, 
coagulation and inflammation were associated with Long 
COVID (Nalbandian et  al. 2021; Pretorius, et  al. 2021). 
We previously reported significant elevations in 14 vas-
cular transformation biomarkers, including ANGPT1 
and SELP, which are also a part of the top 119 proteins 
in this study (Patel et  al. 2022). ANGPT1 has vascular 
protective effects while ANGPTL2 promoted angiogen-
esis (Thorin-Trescases and Thorin 2014; Brindle et  al. 
2006); however, in Long-COVID subjects, the ANGPT1/
ANGPT2 ratio is dramatically increased indicating that 
the angiopoietin system is associated with vascular pro-
tection. Overexpression of PEAR1 was associated with 
decreased proliferation of microvascular endothelial cells 
further corroborating active vascular protection (Zhan 
et  al. 2020). Several pro-coagulation factors were in the 
top 119 proteins including GP5, GP6, and STX8 (Moog 
et  al. 2001; Golebiewska et  al. 2015). GP5 and GP6 are 
involved in platelet adhesion and aggregation (Moog et al. 
2001; Veninga et al. 2022) and STX8 is involved in plate-
let granule secretion, aggregation and thrombus stability 
(Golebiewska et  al. 2015). Overexpression of GP6 was 
linked to large, reactive juvenile platelets (Veninga et al. 
2022) and surface presentation of GP6-dimers is linked 
to thrombotic disorders (Induruwa et  al. 2022). CASP2, 
part of the top 119 proteins, has previously been identi-
fied to be upregulated in COVID-19 and cardiomyopathy 
(Lee et al. 2021). Overall, Long-COVID pathophysiology 
may show active vascular protection or healing, as well as 
increased coagulation.

Long-COVID subjects often report prolonged respira-
tory symptoms with the most common being dyspnea 
(Pinto et  al. 2022). Several of the 119 top proteins were 
associated with the respiratory system including EDAR, 
CCL17, EREG, GTPBP2, and DRG2. EDAR was previ-
ously identified to be altered in COVID-19 patients with 
lung epithelium injury (D’Agnillo, et  al. 2021). Elevated 
CCL17 is associated with various pulmonary condi-
tions including idiopathic pulmonary fibrosis, asthma 
and COPD and cigarette smoke-induced pulmonary 
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inflammation (Yogo et al. 2009; Machida et al. 2022; Sta-
ples et al. 2012). CCL17 was also noted to be an impor-
tant biomarker for eosinophilic disorders including 
differentiating eosinophilic pneumonia from acute lung 
injury (Miyazaki et  al. 2007; Catherine and Roufosse 
2021). EREG was involved in cell proliferation and dif-
ferentiation of airway epithelial cells (Riese and Cullum 
2014). Overexpression of EREG, GTPBP2, and DRG2 
was linked to tumor growth in non-small cell lung can-
cer (Jie et al. 2021; Sunaga et al. 2008; Hong et al. 2018). 
FRZB is involved in the WNT/ ß-catenin pathway and 
serves as a WNT antagonist (Dale 1998). The WNT/ß-
catenin pathway has been linked to various conditions 
including sepsis and inflammation, and was hypoth-
esized to be involved in COVID-19 pulmonary fibrosis 
(Nusse and Clevers 2017; Zhang et al. 2021b; Satu et al. 
2021). Increased FRZB was observed in acutely ill severe 
COVID-19 (Teng et al. 2021), but depressed in our Long-
COVID outpatients.

SARS-CoV-2 utilizes the ACE2 receptor for cellular 
entry via spike protein binding, and the ACE2 receptor 
is a critical component of the renin–angiotensin–aldos-
terone system (RAAS) that is involved in renal, vascular, 
and myocardial functions (Martínez-Salazar et al. 2022). 
Downregulation of the ACE2 receptor during acute 
infection may lead to RAAS dysregulation, including 
electrolyte, cardiovascular and pulmonary dysfunction 
in Long-COVID (Sui et al. 2021; Lei et al. 2021; Pedrosa 
Maria et al. 2021; Cooper et al. 2021; Mandal et al. 2021). 
Reduced ACE2 function is linked to activation of the 
des-Arg9 bradykinin (DABK)/bradykinin receptor B1 
(BKB1R), potentially increasing neutrophil infiltration 
and release of proinflammatory cytokines such as CXCL5 
(Abassi et al. 2021; Sodhi et al. 2018). This latter mecha-
nism is consistent with the elevated CXCL5 in Long-
COVID outpatients demonstrated by our proteomic 
study.

Our study has identified 119 key proteins and devel-
oped optimal models with nine and five proteins; how-
ever, our study has several limitations. First, we included 
an equal, yet conservative number of matched subjects 
within each group. Nonetheless, we ensured robust 
analysis via non-parametric statistics and conservative 
machine learning parameters. With regards to the latter, 
potential overfitting due to a nested feature selection was 
reduced by performing 10,000 repetitions of RFE, test-
ing the optimal models’ performance on the unused test 
dataset, and conducting no hyper-parameter optimiza-
tion. Second, our data showed altered protein expression 
in Long-COVID outpatients; however, we did not have 
longitudinal samples from each subject to determine 
protein changes over time with eventual normalization. 
Third, our analysis showcased models that differentiated 

Long-COVID outpatients from acutely ill COVID-19 
inpatients and healthy control subjects; however, we 
cannot confirm these protein models were distinct from 
other pathologies. Cross-identity concerns can be miti-
gated by using a multiple protein combination, together 
with recognition of diffuse symptoms post-SAR-CoV-2 
infection (PCR-positive acute illness or nucleocapsid 
antibody testing). A combined model would decrease the 
likelihood that other pathologies alter the same biomark-
ers, and in the same temporal manner, as Long-COVID. 
Fourth, previously collected healthy control samples were 
used to verify the absence of a prior SARS-CoV-2 infec-
tion, as our latest attempts to collect healthy control sam-
ples without previous infection or a recent vaccination 
were insufficient. While it is possible that some proteins 
in plasma can be susceptible to both storage duration and 
temperature, strict sample processing and storage pro-
tocols were followed. Lastly, the pre-trained NLP model 
cannot identify organ and cell type expression for pro-
teins without information in UniProt Knowledgebase. 
Despite these caveats, and given the scarcity of knowl-
edge on Long-COVID pathophysiology, our exploratory 
investigation provides valuable insights.

Conclusion
The lack of Long-COVID-specific biomarkers limits 
accurate diagnosis and treatment, as well as disease sur-
veillance. In this study, we identified 119 key proteins 
and developed two accurate models with nine and five 
proteins, respectively. These exploratory results provide 
valuable insight for future studies investigating Long-
COVID pathophysiological mechanisms, diagnosis, and 
therapeutics.
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